资源类型

期刊论文 293

会议视频 5

会议信息 1

年份

2023 35

2022 31

2021 39

2020 13

2019 12

2018 13

2017 14

2016 12

2015 7

2014 20

2013 4

2012 9

2011 12

2010 16

2009 12

2008 15

2007 16

2006 1

2005 4

2004 3

展开 ︾

关键词

膜分离 6

绿色化工 4

气体分离 3

反渗透 2

水安全 2

油水分离 2

渗透汽化 2

粒子群优化 2

粒子群优化算法 2

聚偏氟乙烯 2

3D支架平台 1

CCS 1

CO2分离 1

CO2捕集 1

Fe、Co、Ru 碳化物 1

Hilare 机器人 1

Pickering乳液 1

SPH 1

“上限” 1

展开 ︾

检索范围:

排序: 展示方式:

Preparation and properties of a silver particle-coated and 1-dodecanethiol-modified superhydrophobicmelamine sponge for oil/water separation

《化学科学与工程前沿(英文)》 2022年 第16卷 第8期   页码 1237-1246 doi: 10.1007/s11705-022-2140-8

摘要: A Ag particle-coated and 1-dodecanethiol-modified melamine sponge (Ag-DDT-MS) was prepared through surface roughness by coating silver particles and subsequent grafting of a hydrophobic long hydrocarbon chain. Superhydrophobic and 3D porous Ag-DDT-MS was characterized by Fourier transform infrared spectroscopy, scanning electron microscope, energy-dispersive X-ray spectroscopy, and X-ray diffraction. The water contact angle of Ag-DDT-MS reached 159.2°. Ag-DDT-MS exhibited excellent absorption capacity for high viscous oils and organic solvents, ranging from 42.8 to 105.2 g∙g−1. The absorbed oils can be easily collected by the mechanical pressing process, and the oil recovery rate was satisfactory, more than 90% after 20 recycles. Ag-DDT-MS material also demonstrated good stability and excellent compression-recovery ability, keeping 88.6% of the initial height after ten compression-release cycles.

关键词: melamine sponge     oil-absorbing material     hydrophobic     oil-water separation     oil absorption capacity    

Stormwater treatment: examples of computational fluid dynamics modeling

Gaoxiang YING, John SANSALONE, Srikanth PATHAPATI, Giuseppina GAROFALO, Marco MAGLIONICO, Andrea BOLOGNESI, Alessandro ARTINA

《环境科学与工程前沿(英文)》 2012年 第6卷 第5期   页码 638-648 doi: 10.1007/s11783-012-0442-7

摘要: Control of rainfall-runoff particulate matter (PM) and PM-bound chemical loads is challenging; in part due to the wide gradation of PM complex geometries of many unit operations and variable flow rates. Such challenges and the expense associated with resolving such challenges have led to the relatively common examination of a spectrum of unit operations and processes. This study applies the principles of computational fluid dynamics (CFD) to predict the particle and pollutant clarification behavior of these systems subject to dilute multiphase flows, typical of rainfall-runoff, within computationally reasonable limits, to a scientifically acceptable degree of accuracy. The Navier-Stokes (NS) system of nonlinear partial differential equations for multi-phase hydrodynamics and separation of entrained particles are solved numerically over the unit operation control volume with the boundary and initial conditions defined and then solved numerically until the desired convergence criteria are met. Flow rates examined are scaled based on sizing of common unit operations such as hydrodynamic separators (HS), wet basins, or filters, and are examined from 1 to 100 percent of the system maximum hydraulic operating flow rate. A standard turbulence model is used to resolve flow, and a discrete phase model (DPM) is utilized to examine the particle clarification response. CFD results closely follow physical model results across the entire range of flow rates. Post-processing the CFD predictions provides an in-depth insight into the mechanistic behavior of unit operations by means of three dimensional (3-D) hydraulic profiles and particle trajectories. Results demonstrate the role of scour in the rapid degradation of unit operations that are not maintained. Comparisons are provided between measured and CFD modeled results and a mass balance error is identified. CFD is arguably the most powerful tool available for our profession since continuous simulation modeling.

关键词: stormwater     unit operations and processes (UOPs)     hydrodynamic separation     filtration     adsorption     computational fluid dynamics (CFD)     turbulence modeling     discrete phase model     particle separation     detention/retention basins     clarification    

Evaluation of the influence of El Niño–Southern Oscillation on air quality in southern China from long-term historical observations

《环境科学与工程前沿(英文)》 2022年 第16卷 第2期 doi: 10.1007/s11783-021-1460-0

摘要:

•Strong ENSO influence on AOD is found in southern China region.

关键词: El Niño–Southern Oscillation     Aerosol concentration     Aerosol particle size     Contribution separation     Decadal trend     Southern China    

Phase separation in cGAS-STING signaling

《医学前沿(英文)》   页码 855-866 doi: 10.1007/s11684-023-1026-6

摘要: Biomolecular condensates formed by phase separation are widespread and play critical roles in many physiological and pathological processes. cGAS-STING signaling functions to detect aberrant DNA signals to initiate anti-infection defense and antitumor immunity. At the same time, cGAS-STING signaling must be carefully regulated to maintain immune homeostasis. Interestingly, exciting recent studies have reported that biomolecular phase separation exists and plays important roles in different steps of cGAS-STING signaling, including cGAS condensates, STING condensates, and IRF3 condensates. In addition, several intracellular and extracellular factors have been proposed to modulate the condensates in cGAS-STING signaling. These studies reveal novel activation and regulation mechanisms of cGAS-STING signaling and provide new opportunities for drug discovery. Here, we summarize recent advances in the phase separation of cGAS-STING signaling and the development of potential drugs targeting these innate immune condensates.

关键词: biomolecular condensates     phase separation     cGAS-STING pathway     cGAS     STING     cGAMP     interferon    

Catalyst particle shapes and pore structure engineering for hydrodesulfurization and hydrodenitrogenation

《化学科学与工程前沿(英文)》 2022年 第16卷 第6期   页码 897-908 doi: 10.1007/s11705-021-2127-x

摘要: Catalyst particle shapes and pore structure engineering are crucial for alleviating internal diffusion limitations in the hydrodesulfurization (HDS)/hydrodenitrogenation (HDN) of gas oil. The effects of catalyst particle shapes (sphere, cylinder, trilobe, and tetralobe) and pore structures (pore diameter and porosity) on HDS/HDN performance at the particle scale are investigated via mathematical modeling. The relationship between particle shape and effectiveness factor is first established, and the specific surface areas of different catalyst particles show a positive correlation with the average HDS/HDN reaction rates. The catalyst particle shapes primarily alter the average HDS/HDN reaction rate to adjust the HDS/HDN effectiveness factor. An optimal average HDS/HDN reaction rate exists as the catalyst pore diameter and porosity increase, and this optimum value indicates a tradeoff between diffusion and reaction. In contrast to catalyst particle shapes, the catalyst pore diameter and the porosity of catalyst particles primarily alter the surface HDS/HDN reaction rate to adjust the HDS/HDN effectiveness factor. This study provides insights into the engineering of catalyst particle shapes and pore structures for improving HDS/HDN catalyst particle efficiency.

关键词: hydrodesulfurization     hydrodenitrogenation     particle shape     pore structure    

A novel light fluctuation spectrum method for in-line particle sizing

Shouxuan QIN, Xiaoshu CAI, Li MA

《能源前沿(英文)》 2012年 第6卷 第1期   页码 89-97 doi: 10.1007/s11708-012-0176-z

摘要: This paper discusses two problems in in-line particle sizing when using light fluctuation method. First, by retrieving the ratio of particle concentrations at different time, the intensity of incident light is obtained. There exists narrow error between the calculated and pre-detected value of the intensity of incident light. Secondly, by combining spectrum analysis with Gregory’s theory, a multi-sub-size zone model is proposed, with which the relationship between the distribution of turbidity and the particle size distribution (PSD) can be established, and an algorithm developed to determine the distribution of turbidity. Experiments conducted in the laboratory indicate that the measured size distribution of pulverized coal conforms well with the imaging result.

关键词: in-line measurement     particle size distribution (PSD)     incident light intensity     particle concentration     light fluctuation    

Independent cover meshless particle method for complex geotechnical engineering

Jianqiu WU, Yongchang CAI

《结构与土木工程前沿(英文)》 2018年 第12卷 第4期   页码 515-526 doi: 10.1007/s11709-017-0428-4

摘要: A new Independent Cover Meshless Particle (ICMP) method is proposed for the analysis of complex geotechnical engineering. In the ICMP method, the independent rectangular cover regardless of the shape of the analysis model is employed as the influence domain of each discrete node, the general polynomial is employed as the meshless interpolation function of the independent nodal cover, and the Cartesian Transformation Method (CTM) is used for the numerical integration of the nodal covers cut by material interfaces, joints, cracks and faults. The present method has a simple formulation and a low computational cost, and is easy for the numerical analysis and modeling of complex geotechnical engineering. Several typical numerical examples are presented to demonstrate the accuracy and robustness of the proposed method.

关键词: meshless method     particle method     independent cover     CTM     geotechnical engineering    

Microdamage study of granite under thermomechanical coupling based on the particle flow code

《结构与土木工程前沿(英文)》   页码 1413-1427 doi: 10.1007/s11709-023-0953-2

摘要: The thermomechanical coupling of rocks refers to the interaction between the mechanical and thermodynamic behaviors of rocks induced by temperature changes. The study of this coupling interaction is essential for understanding the mechanical and thermodynamic properties of the surrounding rocks in underground engineering. In this study, an improved temperature-dependent linear parallel bond model is introduced under the framework of a particle flow simulation. A series of numerical thermomechanical coupling tests are then conducted to calibrate the micro-parameters of the proposed model by considering the mechanical behavior of the rock under different thermomechanical loadings. Good agreement between the numerical results and experimental data are obtained, particularly in terms of the compression, tension, and elastic responses of granite. With this improved model, the thermodynamic response and underlying cracking behavior of a deep-buried tunnel under different thermal loading conditions are investigated and discussed in detail.

关键词: thermomechanical coupling effect     granite     improved linear parallel bond model     thermal property     particle flow code    

Selective capture and separation of xenon and krypton using metal organic frameworks: a review

《化学科学与工程前沿(英文)》 2023年 第17卷 第12期   页码 1895-1912 doi: 10.1007/s11705-023-2355-3

摘要: Xenon and krypton are widespread useful noble gases in commercial lighting, lasers, electronics, and medical industry. At the same time, radioactive noble gases may proliferate from used nuclear fuel and diffuse in open atmospheres. Metal organic frameworks as hotspot porous materials for gases uptake and separation are considered to be potential solutions. In this review, we comprehensively summarized recent researches on metal organic frameworks for selective capture and separation of xenon and krypton. Particularly, we followed the aspects of different optimal design strategies, including optimal pore/cage size and geometry, open metal sites, ions (anions and cations), and polar functional groups for enhancing the xenon adsorption and separation performances. Meanwhile, a comparison of each strategy and the mechanisms of xenon/krypton separation were pointed out. The separation of krypton from gases mixtures by dual-bed systems was further discussed. Finally, some existing challenges and opportunities for possible real applications were proclaimed.

关键词: metal organic frameworks     xenon     krypton     selective separation     used nuclear fuel    

Study on direct measurement method of vorticity from particle images

RUAN Xiaodong, FU Xin, YANG Huayong

《能源前沿(英文)》 2007年 第1卷 第4期   页码 408-412 doi: 10.1007/s11708-007-0059-1

摘要: To overcome the shortcomings of conventional methods for vorticity measurement, a new direct measurement of vorticity (DMV) method extracting vorticity from particle images was proposed. Based on the theory of fluid flow, two matc

关键词: conventional     vorticity measurement     particle     DMV     theory    

Response surface regression analysis on FeCrBSi particle in-flight properties by plasma spray

Runbo MA,Lihong DONG,Haidou WANG,Shuying CHEN,Zhiguo XING

《机械工程前沿(英文)》 2016年 第11卷 第3期   页码 250-257 doi: 10.1007/s11465-016-0401-2

摘要:

This work discusses the interactive effects between every two of argon flow rate, voltage, and spray distance on in-flight particles by plasma spray and constructs models that can be used in predicting and analyzing average velocity and temperature. Results of the response surface methodology show that the interactive effects between voltage and spray distance on particle in-flight properties are significant. For a given argon flow rate, particle velocity and temperature response surface are obviously bending, and a saddle point exists. With an increase in spray distance, the interactive effects between voltage and argon flow rate on particle in-flight properties appear gradually and then weaken. With an increase in voltage, the interactive effects between spray distance and argon flow rate on particle in-flight properties change from appearing to strengthening and then to weakening.

关键词: particle velocity     particle temperature     interactive effects     response surface    

Highly hydrophobic oil−water separation membrane: reutilization of waste reverse osmosis membrane

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1606-1615 doi: 10.1007/s11705-022-2200-0

摘要: The increasing applications of seawater desalination technology have led to the wide usage of polyamide reverse osmosis membranes, resulting in a large number of wasted reverse osmosis membranes. In this work, the base nonwoven layer of the wasted reverse osmosis membrane was successfully modified into the hydrophobic membrane via surface deposition strategy including TiO2 and 1H,1H,2H,2H-perfluorooctyltrichlorosilane (PFOTS), respectively. Various techniques were applied to characterize the obtained membranes, which were then used to separate the oil–water system. The optimally modified membrane displayed good hydrophobicity with a contact angle of 135.2° ± 0.3°, and its oil–water separation performance was as high as 97.8%. After 20 recycle tests, the oil–water separation performance remained more than 96%, which was attributed to the film adhesion of the anchored TiO2 and PFOTS layer on the surface. This work might provide a new avenue for recycling the wasted reverse osmosis membrane used in oily wastewater purification.

关键词: oil–water separation     wasted reverse osmosis membrane     hydrophobic modification    

Phase separation time/temperature dependence of thermoplastics-modified thermosetting systems

ZHANG Xiujuan, XU Yuanze, YI Xiaosu

《化学科学与工程前沿(英文)》 2008年 第2卷 第3期   页码 276-285 doi: 10.1007/s11705-008-0057-5

摘要: The cure-induced phase separation processes of various thermoplastics(TP)-modified thermosetting systems which show upper critical solution temperature (UCST) or lower critical solution temperature (LCST) were studied with emphasis on the temperature dependency of the phase separation time and its potential application in the cure time-temperature processing window. We found that the phase separation time/temperature relationship follows the simple Arrhenius equation. The cure-induced phase separation activation energy (ps) generated from the linear fitting of the Arrhenius equation is irrelevant to the detection means of phase separation time. We also found that (ps) is insensitive to TP content, TP molecular weight and curing rate, but it changes with the cure reaction kinetics and the chemical environment of the systems. With the established phase separation time-temperature dependence relation, we can easily establish the whole cure time-temperature transformation (TTT) diagram with morphology information which is a useful map for the TP/TS composites processing industry.

关键词: separation time-temperature     temperature dependency     cure-induced     separation activation     temperature    

Microfluidic production of liposomes through liquid–liquid phase separation in ternary droplets

《化学科学与工程前沿(英文)》 2022年 第16卷 第6期   页码 1017-1022 doi: 10.1007/s11705-021-2118-y

摘要: Liposomes, the self-assembled phospholipid vesicles, have been extensively used in various fields such as artificial cells, drug delivery systems, biosensors and cosmetics. However, current microfluidic routes to liposomes mostly rely on water-in-oil-in-water double emulsion droplets as templates, and require complex fabrication of microfluidic devices, and tedious manipulation of multiphase fluids. Here we present a simple microfluidic approach to preparing monodisperse liposomes from oil-in-water droplets. For demonstration, we used butyl acetate-water-ethanol ternary mixtures as inner phase and an aqueous solution of surfactants as outer phase to make oil-in-water droplets, which can evolve into water-in-oil-in-water double emulsion droplets by liquid–liquid phase separation of ternary mixtures. Subsequently, the resultant water-in-oil-in-water droplets underwent a dewetting transition to form separated monodisperse liposomes and residual oil droplets, with the assistance of surfactants. The method is simple, does not require complex microfluidic devices and tedious manipulation, and provides a new platform for controllable preparation of liposomes.

关键词: microfluidics     liposomes     ternary droplets     phase separation    

Imprinted membranes for sustainable separation processes

Laura Donato, Enrico Drioli

《化学科学与工程前沿(英文)》 2021年 第15卷 第4期   页码 775-792 doi: 10.1007/s11705-020-1991-0

摘要: The rapid industrial growth and the necessity of recovering and recycling raw materials increased the interest in the production of highly selective and efficient separation tools. In this perspective, a relevant input was given by the membrane-based technology and the production of imprinted membranes, which possess specific recognition properties at molecular and ionic level, offers the possibility of developing sustainable and green processes. Furthermore, the integration of imprinted membranes with traditional or membrane-based approaches is a promising strategy in the logic of process intensification, which means the combination of different operations in a single apparatus. This work discusses the concept and separation mechanisms of imprinted membranes. Furthermore, it presents an overview of their application in organic solvent nanofiltration, for the removal of toxic agents and recovery solvent, as well as valuable compounds. The recent advances in water treatment, such as pesticide removal and recovery of metal ions, are also discussed. Finally, potential applications of imprinted membranes in hybrid processes are highlighted, and a look into the future of membrane separations for water treatment and recovery of critical raw materials is offered.

关键词: sustainable processes     membrane separation     molecular recognition     imprinted membranes     water treatment    

标题 作者 时间 类型 操作

Preparation and properties of a silver particle-coated and 1-dodecanethiol-modified superhydrophobicmelamine sponge for oil/water separation

期刊论文

Stormwater treatment: examples of computational fluid dynamics modeling

Gaoxiang YING, John SANSALONE, Srikanth PATHAPATI, Giuseppina GAROFALO, Marco MAGLIONICO, Andrea BOLOGNESI, Alessandro ARTINA

期刊论文

Evaluation of the influence of El Niño–Southern Oscillation on air quality in southern China from long-term historical observations

期刊论文

Phase separation in cGAS-STING signaling

期刊论文

Catalyst particle shapes and pore structure engineering for hydrodesulfurization and hydrodenitrogenation

期刊论文

A novel light fluctuation spectrum method for in-line particle sizing

Shouxuan QIN, Xiaoshu CAI, Li MA

期刊论文

Independent cover meshless particle method for complex geotechnical engineering

Jianqiu WU, Yongchang CAI

期刊论文

Microdamage study of granite under thermomechanical coupling based on the particle flow code

期刊论文

Selective capture and separation of xenon and krypton using metal organic frameworks: a review

期刊论文

Study on direct measurement method of vorticity from particle images

RUAN Xiaodong, FU Xin, YANG Huayong

期刊论文

Response surface regression analysis on FeCrBSi particle in-flight properties by plasma spray

Runbo MA,Lihong DONG,Haidou WANG,Shuying CHEN,Zhiguo XING

期刊论文

Highly hydrophobic oil−water separation membrane: reutilization of waste reverse osmosis membrane

期刊论文

Phase separation time/temperature dependence of thermoplastics-modified thermosetting systems

ZHANG Xiujuan, XU Yuanze, YI Xiaosu

期刊论文

Microfluidic production of liposomes through liquid–liquid phase separation in ternary droplets

期刊论文

Imprinted membranes for sustainable separation processes

Laura Donato, Enrico Drioli

期刊论文